Section 1

Preview this deck

e^(20-25x) =

Front

Star 0%
Star 0%
Star 0%
Star 0%
Star 0%

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Active users

0

All-time users

0

Favorites

0

Last updated

6 years ago

Date created

Mar 1, 2020

Cards (32)

Section 1

(32 cards)

e^(20-25x) =

Front

e^(20-25x)/25

Back

Polar → Rectangular of x

Front

x=rcosθ

Back

x²+y²= (Polar coordinate conversion)

Front

r^2

Back

cosAcosB

Front

(½)(cos(A+B)+cos(A-B))

Back

Disk Method

Front

π*[f(x)]² {Think disk is given by πr²} Integrated perpendicular to the axis of rotation along the distance of the radius

Back

sin(2θ)

Front

2sinθcosθ

Back

Newton's Law of Cooling

Front

(dy/dt) = k(y-[value of ambient temperature])

Back

cos²θ

Front

(1+cos(2θ))÷2

Back

Shell Method Formula

Front

(radius function)f(x) {this yields outer surface area 2πr* height} Integrated long-ways parallel to the axis of rotation

Back

(d/dx)(arccos(x))

Front

-1/(1-x²)^½

Back

sinAcosB

Front

(½)(sin(A+B)+sin(A-B))

Back

∫cotx

Front

ln|sinx| + C

Back

Rectangular → Polar of r

Front

r = (x²+y²)^½

Back

(d/dx)arcsin(x)

Front

1/(1-x²)^½

Back

Integration by Parts

Front

Back

(d/dx)(arctan(x))

Front

1/(1+x²)

Back

Polar → Rectangular of y

Front

x=rsinθ

Back

y÷x= (Polar coordinate conversion)

Front

tan(theta)

Back

d/dx (tan(x))

Front

sec²x

Back

Linear form differential equation

Front

dy/dt + p(t)y = g(t)

Back

sinAsinB

Front

(-½)(cos(A+B)-cos(A-B))

Back

Rectangular → Polar of θ

Front

tanθ = y/x (x≠0)

Back

The general solution of y′ + P(x)y = Q(x) is

Front

Back

d/dx cotx

Front

-csc²x

Back

Forward Difference Formula

Front

f'(a) ≈ (f(a)-f(a-h))/(h)

Back

To find the sum of the first Sn terms of a geometric sequence use the formula

Front

Back

sin²θ

Front

(1-cos(2θ))÷2

Back

Logistic equation

Front

(dy/dt) = ky(1-[y/k])

Back

x= (Polar coordinate conversion)

Front

r*cos(theta)

Back

y= (Polar coordinate conversion)

Front

r*sin(theta)

Back

cot²θ+1

Front

csc²θ

Back

α(x) is an integrating factor:

Front

Back