Section 1

Preview this deck

Half-angle: sin²x

Front

Star 0%
Star 0%
Star 0%
Star 0%
Star 0%

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Active users

0

All-time users

0

Favorites

0

Last updated

6 years ago

Date created

Mar 14, 2020

Cards (47)

Section 1

(47 cards)

Half-angle: sin²x

Front

1/2 [1-cos(2x)]

Back

Derivative: arctan x

Front

U'/1+u^2

Back

cos pi/4

Front

√2/2

Back

Integral: du/(a^2 -u^2)^1/2

Front

Arcsin u/a + C

Back

Derivative: arccos x

Front

-u'/(1-u^2)^1/2

Back

cos pi/3

Front

1/2

Back

Derivative: cotan x

Front

- csc^2 x

Back

Derivative: arccot x

Front

-u'/1+u^2

Back

Derivative: cos x

Front

- sin x

Back

a^x

Front

e^(xlna)

Back

Derivative: log a u

Front

U'/(ln a)u

Back

Derivative: tan x

Front

sec^2 x

Back

Integral: sec x tan x

Front

sec x + C

Back

Limit: arcsin x

Front

-pi/2<y<pi/2

Back

Derivative: a^x

Front

a^x lna

Back

Derivative: arccsc

Front

-u'/u(u^2-1)^1/2

Back

Integral: csc^2 x

Front

- cotan x + C

Back

Derivative: sin x

Front

cos x

Back

sin pi/6

Front

1/2

Back

Integral: sin x

Front

- cos x + C

Back

Limit: arcsec x

Front

0<y<pi Y can't = pi/2

Back

Limit: arctan x

Front

-pi/2<y<pi/2

Back

Integrate by parts

Front

(U)v - S (v)du

Back

cos pi/6

Front

√3/2

Back

Half-angle: cos²x

Front

1/2 [1+cos(2x)]

Back

sin pi/3

Front

√3/2

Back

Integral: du/u(u^2 - a^2)^1/2

Front

1/a arcsec u/a + C

Back

Integral: sec^2 x

Front

tan x + C

Back

Derivative: ln x

Front

1/x

Back

Derivative: sec x

Front

sec x tan x

Back

Integral: cos x

Front

sin x + C

Back

Integral: du/a^2 + u^2

Front

1/a arctan u/a + C

Back

Derivative: arcsin x

Front

U'/(1-u^2)^1/2

Back

Integral: csc x cotan x

Front

- csc x

Back

Integral: sec x

Front

Ln (sec x + tan x) + C

Back

tan pi/3

Front

√3

Back

Derivative: arcsec x

Front

U'/u(u^2-1)^1/2

Back

Limit: arccsc x

Front

-pi/2<y<pi/2 Y can't = 0

Back

Integral: csc x

Front

-ln (csc x + cot x) + C

Back

tan pi/6

Front

√3/3

Back

Integral: tan x

Front

-ln (cos x) + C

Back

Sin pi/4

Front

√2/2

Back

tan pi/4

Front

1

Back

Limit: arccot x

Front

0<y<pi

Back

Limit: arccos x

Front

0<y<pi

Back

Derivative: cosec x

Front

- cosec x cotan x

Back

Integral: cot x

Front

Ln (sin x) + C

Back