Section 1

Preview this deck

csc^2udu

Front

Star 0%
Star 0%
Star 0%
Star 0%
Star 0%

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Active users

0

All-time users

1

Favorites

0

Last updated

6 years ago

Date created

Mar 1, 2020

Cards (31)

Section 1

(31 cards)

csc^2udu

Front

-cotu+c

Back

odd cosx

Front

keep cosx: change 1 to (1-sin^2x)

Back

improper integrals

Front

b-> improper

Back

cscudu

Front

-ln|cscu+cotu|+c

Back

tan^2x

Front

sec^2x-1

Back

{sinudu=

Front

-cosu+c

Back

cscucotudu

Front

-cscu+c

Back

du/u(u^2-a^2)^1/2

Front

1/a arcsec |u|/a + C

Back

LIATE

Front

Log Inverse Algebraic Trig Exponential

Back

du/(a^2-u^2)^1/2

Front

arcsin(u/a)+C

Back

secudu

Front

ln|secu+tanu|+c

Back

odd tanx

Front

turn secxtanx into sec^2x-1

Back

Logistics Differential Equation

Front

dp/dt= kP(M-P)

Back

secutanudu

Front

secu+c

Back

sec^2x

Front

1+tan^2x

Back

a^udu

Front

(1/lna)a^u+c

Back

even sinx

Front

sin^2x=1/2(1-cos2x)

Back

odd secx, no tanx

Front

dv=sec^2xdx

Back

du/u

Front

ln|u| +C

Back

du/a^2+u^2

Front

(1/a)arctan(u/a)+C

Back

even secx

Front

turn sec^2x into tan^2x+1

Back

even tanx, no secx

Front

turn tan^2x into sec^2x-1

Back

Integration using Partial Fractions

Front

1- Factor denom. 2-set equal, split up, make denom same 3- get rid of denom 4-pick values for x 5- plug in values and solve

Back

tanudu

Front

-ln|cosu|+c

Back

{cosudu=

Front

sinu+c

Back

sec^2udu

Front

tanu+c

Back

odd sinx

Front

keep sinx: change 1 to (1-cos^2x)

Back

cotudu

Front

ln|sinu|+c

Back

special: positive infinity on top, 1 on bottom

Front

1/p-1 if p>1 (converges) diverges p<1

Back

even cosx

Front

cos^2x=1/2 (1+cos2x)

Back

e^u

Front

e^u+c

Back