Section 1

Preview this deck

e^lnx=

Front

Star 0%
Star 0%
Star 0%
Star 0%
Star 0%

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Active users

0

All-time users

0

Favorites

0

Last updated

6 years ago

Date created

Mar 1, 2020

Cards (44)

Section 1

(44 cards)

e^lnx=

Front

x

Back

Fundamental Theorem of Calculus

Front

∫ f(x) dx on interval a to b = F(b) - F(a)

Back

tanx'=

Front

Sec^2x

Back

ln(1)=

Front

0

Back

c= a^b

Front

b= logaC

Back

d/dx(e^x)

Front

e^x

Back

Integral tanx dx=

Front

-ln|cosx| + C

Back

loga a^x=

Front

x

Back

Integral secx dx=

Front

ln|secx + tanx| + C

Back

cscx'

Front

-cscxcotx

Back

lnx= Integral from 1 to x (1/t)dt, x>0

Front

See graph

Back

Ln(a/b)=

Front

ln(a)-ln(b)

Back

2nd Fundamental Theorem of Calculus

Front

d/dx [integral from a to x f(t)dt]= f(x)

Back

b= e^a

Front

a= lnb

Back

lne^x=

Front

x

Back

logaX=

Front

lnx/lna

Back

lna^n=

Front

nlna

Back

Integral 1/x dx=

Front

ln |x| + C

Back

d/dx(a^u)=

Front

a^u(lna)(u')

Back

Average Value Theorem

Front

1/ (b-a) integral a to b f(x)dx

Back

d/dx (log aX) =

Front

1/(xlna)

Back

ln(e)=

Front

1

Back

d/dx(e^u)=

Front

e^u(u')

Back

Cotx'

Front

-csc^2x

Back

Integral e^x dx=

Front

e^x + C

Back

a^x=

Front

e^(xlna)

Back

Secx' =

Front

Secxtanx

Back

d/dx(ln |u|) =

Front

1/u * u'

Back

Integral cosx dx=

Front

sinx + C

Back

Integral cscx dx=

Front

-ln|cscx + cotx| + C

Back

Trapezoidal Rule

Front

(b-a)/2n (f(0) + 2f(1)+ 2f(2) ..... f(n))

Back

Ln(ab) =

Front

ln(a) + ln(b)

Back

Integral a^x dx=

Front

a^x (1/lna) + C

Back

d/dx(logaU) =

Front

1/(ulna) * u'

Back

d/dx (lnu) =

Front

1/u * u'

Back

d/dx(a^x) =

Front

a^x*ln(a)

Back

Riemann's Sum

Front

(b-a)/n (f(0) + f(1) ..... f(n))

Back

Integral cotx dx=

Front

ln|sinx| + C

Back

a^logaX=

Front

x

Back

Sinx'=

Front

cosx

Back

If g is the inverse of f then

Front

g'(x)= 1/(f'(g(x)))

Back

Integral sinx dx=

Front

-cosx + C

Back

d/dx (lnx) =

Front

1/x

Back

cosx'=

Front

-sinx

Back