\(\frac{d}{dx}[\ln u]\)
Front
Active users
0
All-time users
1
Favorites
0
Last updated
3 years ago
Date created
Feb 4, 2022
Unsectioned
(18 cards)
\(\frac{d}{dx}[\ln u]\)
\(\frac{u'}{u}\)
\(\frac{d}{dx}[\text{arccot }x]\)
\(-\frac{1}{1+x^2}\)
\(x' \text{in numerator for chain rule}\)
\(\frac{d}{dx}[\arctan x]\)
\(\frac{1}{1+x^2}\)
\(x' \text{in numerator for chain rule}\)
Chain rule short cut
\(\frac{dy}{dx}n[u(x)]^{n-1}\cdot \frac{du}{dx}\)
\(\frac{dy}{dx}[u^n]=nu^{n-1}\cdot u'\)
\(\frac{d}{dx}[e^u]\)
\(e^u\cdot u'\)
\(\frac{d}{dx}[\log_a u]\)
\(\frac{1}{(\ln a)u}\cdot \frac{du}{dx}\)
Trig functions chain rule
\(\frac{d}{dx}[\text{trig }u]=(\text{trig }u)'\cdot u'\)
\(s(t)\)
Position function
\(x^{-1}\)
\(f^{-1}(x)\)
\(\frac{1}{x}\)
inverse of \(f(x)\)
\(\frac{d}{dx}[\arcsin x]\)
\(\frac{1}{\sqrt{1-x^2}}\)
\(x' \text{in numerator for chain rule}\)
\(v(t)=s'(t)\)
Velocity function
\(\frac{d}{dx}[\arccos x]\)
\(-\frac{1}{\sqrt{1-x^2}}\)
\(x' \text{in numerator for chain rule}\)
\(\frac{d}{dx}[\text{arccsc }x]\)
\(-\frac{1}{|x|\sqrt{x^2-1}}\)
\(x' \text{in numerator for chain rule}\)
Chain rule
\(\frac{d}{dx}[f(g(x))]=f'(g(x))\cdot g'(x)\)
\(\frac{d}{dx}[\text{arcsec } x]\)
\(\frac{1}{|x|\sqrt{x^2-1}}\)
\(x' \text{in numerator for chain rule}\)
\(\frac{d}{dx}[a^u]\)
\((\ln a)a^u\cdot \frac{du}{dx}\)
\(a(t)=v'(t)=s''(t)\)
Acceleration function
\(\frac{d}{dx}[f^{-1}(x)]\)
\(\frac{1}{f'(f^{-1}(x))}\)