AP Physics 1 Formulas

AP Physics 1 Formulas

memorize.aimemorize.ai (lvl 286)
Section 1

Preview this deck

weight

Front

Star 0%
Star 0%
Star 0%
Star 0%
Star 0%

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Active users

0

All-time users

0

Favorites

0

Last updated

1 year ago

Date created

Mar 1, 2020

Cards (53)

Section 1

(50 cards)

weight

Front

g=Fg/m

Back

power, general

Front

P=ΔE/t

Back

instantaneous velocity

Front

vx=vo+at

Back

work equation

Front

W= Fdcosθ

Back

change in angular momentum

Front

ΔL=τt

Back

electrical force force between charges

Front

Fe=kq1q2/r^2

Back

rotational displacement function

Front

θ=θo+ωot+1/2αt^2

Back

Hooke's Law

Front

Fs=kx

Back

rotational kinetic energy

Front

K=1/2Iω^2

Back

Ohm's Law

Front

I=V/R

Back

angular momentum

Front

L=Iω

Back

current in terms of charge

Front

I=Δq/Δt

Back

displacement for harmonic motion

Front

x=Acos(2πft)

Back

wavespeed

Front

λ=v/f

Back

work-energy theorem

Front

ΔE=W

Back

period with angular velocity

Front

T=2π/ω

Back

time to fall

Front

t=√2h/g

Back

gravitational potential energy

Front

ΔUg=mgΔy

Back

definition of acceleration

Front

a=Δv/t

Back

instantaneous rotational velocity

Front

ω=ωo+αt

Back

universal gravitation

Front

Fg=Gm1m2/r^2

Back

period of a pendulum

Front

Tp=2π√l/g

Back

resistance in series

Front

Rs=R1+R2+...Rn

Back

velocity no time

Front

vx^2=vo^2+2aΔd

Back

resistance in parallel

Front

1/Rp=1/R1+1/R2+...1/Rn

Back

gravitational acceleration for any planet

Front

g=GM/r^2

Back

momentum

Front

p=mv

Back

linear kinetic energy

Front

K=1/2mv^2

Back

2nd law

Front

a=F/m

Back

weight parallel

Front

W//=Wsinθ

Back

period with frequency

Front

T=1/f

Back

x-component of velocity

Front

vx=vocosθ

Back

spring potential energy elastic potential energy

Front

Us=1/2kx^2

Back

torque & force

Front

τ=rFsinθ

Back

mechanical power

Front

P=W/t

Back

angular acceleration

Front

α=Στ/I

Back

period of a spring

Front

Ts=2π√m/k

Back

area under F vs. t graph

Front

impulse

Back

area under F vs. x graph

Front

work

Back

friction

Front

f=μN

Back

density

Front

ρ=m/V

Back

displacement function

Front

Δd=vot+1/2at^2

Back

net force for elevator

Front

ΣF=Fs+-mg

Back

weight perpendicular

Front

W-I=Wcosθ

Back

electrical power

Front

P=IV

Back

centripetal acceleration

Front

ac=v^2/r

Back

resistivity

Front

R=ρl/A

Back

net torque

Front

Στ=Iα

Back

impulse change in momentum

Front

Δp=Ft Δp=mΔv

Back

y-component of velocity

Front

voy=vosinθ

Back

Section 2

(3 cards)

maximum velocity on a road curve

Front

v=√rμg

Back

satellite velocity

Front

v=√GM/r

Back

critical velocity at top of circle

Front

v=√gr

Back