AP Physics: Rotational motion

AP Physics: Rotational motion

memorize.aimemorize.ai (lvl 286)
Section 1

Preview this deck

angular momentum

Front

Star 0%
Star 0%
Star 0%
Star 0%
Star 0%

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Active users

3

All-time users

3

Favorites

0

Last updated

1 year ago

Date created

Mar 14, 2020

Cards (26)

Section 1

(26 cards)

angular momentum

Front

rxp

Back

Power

Front

Torque x angular velocity

Back

rotational inertia of a disk

Front

1/2mr²

Back

ω=

Front

ωo+αt

Back

ω²=

Front

ωo²+2(αΔθ)

Back

radial acceleration

Front

centripetal acceleration

Back

K=1/2mv²+1/2Iω²

Front

Kinetic energy during rolling

Back

S=

Front

Back

α=Δω/Δt

Front

Average Angular Acceleration

Back

K=(1/2)Iω²

Front

Rotational Kinetic Energy

Back

ω=dθ/dt

Front

Instantaneous Angular velocity(rad/s)

Back

square root of [a(tangential)²+a(centripetal)²]

Front

Total Linear acceleration

Back

rω²

Front

Equation for Centripetal Acceleration

Back

mr²

Front

Rotational Inertia of a point mass

Back

α=dω/dt

Front

Instantaneous Angular Acceleration

Back

angular momentum

Front

Back

rad/s²

Front

Unit for angular acceleration

Back

v=2πr/T

Front

Translational speed

Back

Work

Front

Torque x angular distance

Back

torque

Front

rxF

Back

a=rα

Front

Tangential Acceleration

Back

Front

Equation for Tangential Speed

Back

θ=

Front

θo+ωot+1/2αt²

Back

ω=Δθ/Δt

Front

Average angular velocity(rad/s)

Back

Sum of Torques=

Front

Back

2π/ω

Front

Equation for Period

Back