AP Calculus AB Chapter 3

AP Calculus AB Chapter 3

memorize.aimemorize.ai (lvl 286)
Section 1

Preview this deck

Surface area of a sphere

Front

Star 0%
Star 0%
Star 0%
Star 0%
Star 0%

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Active users

0

All-time users

0

Favorites

0

Last updated

6 years ago

Date created

Mar 1, 2020

Cards (31)

Section 1

(31 cards)

Surface area of a sphere

Front

4πr²

Back

Volume of a Cube

Front

V=s^3

Back

Product rule of f(x)g(x)

Front

f'(x)g(x)+f(x)g'(x)

Back

d/dx a^u

Front

ln(a)(a^u)(du/dx)

Back

Acceleration Function

Front

Derivative of Velocity Function OR Second Derivative of Position a Function a(t) = v'(t) = s''(t)

Back

d/dx arcsec(x)

Front

x'/|x|sqrt(x^2-1)

Back

log[a]bc

Front

log[a]b + log[a]c

Back

d/dx secx

Front

secxtanx

Back

log[a](b^c)

Front

(c)log[a]b

Back

Volume of a cylinder

Front

V=πr²h

Back

d/dx cscx

Front

-cscxcotx

Back

d/dx arccsc(x)

Front

-x'/|x|sqrt(x^2-1)

Back

d/dx sin(x)

Front

cosx

Back

ln(u)

Front

u'/u

Back

d/dx cosx

Front

-sinx

Back

d/dx cotx

Front

-csc^2x

Back

d/dx log[a]u

Front

u'/ln(a)(u)

Back

Velocity Function

Front

derivative of position function

Back

d/dx arccot(x)

Front

-x'/(1+x^2)

Back

d/dx e^u

Front

e^u (u')

Back

log[a](b/c)

Front

log[a]b-log[a]c

Back

d/dx arccos(x)

Front

-x'/sqrt(1-x^2)

Back

Volume of a cone

Front

1/3πr²h

Back

d/dx arcsin(x)

Front

x'/sqrt(1-x^2)

Back

slope of tangent line

Front

lim h->0 f(x+h)-f(x)/h

Back

Position Function

Front

1/2(g)(t^2)+v[0]t+s[0] g = acceleration due to gravity, -32 ft/sec or -9.8 m/sec on earth t = time v[0] = Initial Velocity of Object s[0] = Initial Height of Object

Back

Quotient rule of f(x)/g(x)

Front

(f'(x)g(x)-f(x)g'(x))/(g(x))^2

Back

Chain Rule of f(g(x))

Front

f'(g(x))g'(x)

Back

Power Rule of u^n

Front

n(u^n-1)(u)'

Back

d/dx arctan(x)

Front

x'/(1+x^2)

Back

d/dx tanx

Front

sec^2x

Back