Derivative of Velocity Function OR Second Derivative of Position a Function
a(t) = v'(t) = s''(t)
Back
d/dx arcsec(x)
Front
x'/|x|sqrt(x^2-1)
Back
log[a]bc
Front
log[a]b + log[a]c
Back
d/dx secx
Front
secxtanx
Back
log[a](b^c)
Front
(c)log[a]b
Back
Volume of a cylinder
Front
V=πr²h
Back
d/dx cscx
Front
-cscxcotx
Back
d/dx arccsc(x)
Front
-x'/|x|sqrt(x^2-1)
Back
d/dx sin(x)
Front
cosx
Back
ln(u)
Front
u'/u
Back
d/dx cosx
Front
-sinx
Back
d/dx cotx
Front
-csc^2x
Back
d/dx log[a]u
Front
u'/ln(a)(u)
Back
Velocity Function
Front
derivative of position function
Back
d/dx arccot(x)
Front
-x'/(1+x^2)
Back
d/dx e^u
Front
e^u (u')
Back
log[a](b/c)
Front
log[a]b-log[a]c
Back
d/dx arccos(x)
Front
-x'/sqrt(1-x^2)
Back
Volume of a cone
Front
1/3πr²h
Back
d/dx arcsin(x)
Front
x'/sqrt(1-x^2)
Back
slope of tangent line
Front
lim h->0 f(x+h)-f(x)/h
Back
Position Function
Front
1/2(g)(t^2)+v[0]t+s[0]
g = acceleration due to gravity, -32 ft/sec or -9.8 m/sec on earth
t = time
v[0] = Initial Velocity of Object
s[0] = Initial Height of Object