AP Calculus BC Formulas

AP Calculus BC Formulas

memorize.aimemorize.ai (lvl 286)
Section 1

Preview this deck

d/dx a^x

Front

Star 0%
Star 0%
Star 0%
Star 0%
Star 0%

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Active users

0

All-time users

0

Favorites

0

Last updated

5 years ago

Date created

Mar 1, 2020

Cards (59)

Section 1

(50 cards)

d/dx a^x

Front

(ln a) • a^x

Back

d/dx ln x

Front

1/x

Back

d/dx loga x

Front

1/((ln a)x)

Back

Lim[x→0] (sin x)/x

Front

1

Back

Acceleration Function

Front

a(t) = v'(t)

Back

Average Value

Front

⌠b │ f(x) dx • 1/(b - a) ⌡a

Back

Lim[x→∞] (1 + (1/x))^x

Front

e

Back

Disk Method

Front

Back

d/dx arccsc x

Front

-1/(│x│√(x^2 - 1) )

Back

d/dx csc x

Front

-csc x cot x

Back

Power Rule

Front

d/dx (x^n) = nx^(n-1)

Back

Chain Rule

Front

d/dx (f(g(x))) = f'(g(x)) • g'(x)

Back

⌠ │ cos x dx ⌡

Front

sin x + C

Back

d/dx sec x

Front

sec x tan x

Back

d/dx arccos x

Front

-1/√(1 - x^2)

Back

d/dx cot x

Front

-csc^2 x

Back

Washer Method

Front

Back

d/dx sin x

Front

cos x

Back

Fundamental Theorem 2

Front

⌠x d/dx │ f(t) dt = f(x) ⌡a

Back

Velocity Function

Front

v(t) = s'(t)

Back

Lim[x→∞] c/(x^n)

Front

0

Back

⌠ │ sec x dx ⌡

Front

ln │sec x + tan x│ + C

Back

Mean Value Theorem

Front

f'(c) = (f(b) - f(a))/(b - a)

Back

⌠ │ du/u√(u^2 - a^2) ⌡

Front

(1/a) arcsec (│u│/a) + C

Back

d/dx arccot x

Front

-1/(1 + x^2)

Back

Quotient Rule

Front

d/dx (f(x)/g(x)) = (g(x) f'(x) - f(x) g'(x))/(g(x))^2

Back

Position Function

Front

s(t)

Back

Projectile Position Equation

Front

s(t) = -1/2 g t^2 + Vo t + Ho; g = 9.8 m/s^2 = 32 ft/s^2

Back

d/dx arctan x

Front

1/(1 + x^2)

Back

Trapezoidal Rule

Front

((b -a)/2n) (f(a) + 2f(x1) + 2f(x2) + ... + 2f(x[n-1]) + f(b))

Back

d/dx cos x

Front

-sin x

Back

Integration by Parts

Front

⌠ ⌠ │u dv = uv - │ v du ⌡ ⌡

Back

d/dx e^x

Front

e^x

Back

d/dx tan x

Front

sec^2 x

Back

Polar Area

Front

⌠b 1/2 │ (r(Θ))^2 dΘ ⌡a

Back

⌠ │ csc x dx ⌡

Front

-ln │csc x + cot x│ + C

Back

⌠ │ du/√(a^2 - u^2) ⌡

Front

arcsin (u/a) + C

Back

(f^-1)'(x)

Front

1/(f'(f^-1(x)))

Back

⌠ │ du/(a^2 + u^2) ⌡

Front

(1/a) arctan (u/a) + C

Back

Lim[x→0] (cos x - 1)/x

Front

0

Back

Exponential Growth/Decay

Front

dy/dt = ky; y = Ne^kt

Back

d/dx arcsin x

Front

1/√(1 - x^2)

Back

Arc Length

Front

Back

⌠ │ tan x dx ⌡

Front

-ln │cos x│ + C

Back

Fundamental Theorem 1

Front

⌠b │ f(x) dx = F(b) - F(a); if F is the antiderivative of f ⌡a

Back

Power Rule for Integrals

Front

⌠ │ x^n dx = (x^(n + 1))/(n + 1) + C ⌡

Back

⌠ │sin x dx ⌡

Front

-cos x + C

Back

⌠ │ cot x dx ⌡

Front

ln │sin x│ + C

Back

Product Rule

Front

d/dx (f(x) • g(x)) = f(x) g'(x) + g(x) f'(x)

Back

d/dx arcsec x

Front

1/(│x│√(x^2 - 1) )

Back

Section 2

(9 cards)

1/(1 - x)

Front

1 + x + x^2 + x^3 + ...

Back

Sum of a Geometric Series

Front

a/(1 -r)

Back

cos x

Front

1 - (x^2)/2! + (x^4)/4! + ...

Back

sin x

Front

x - (x^3)/3! + (x^5)/5! + ...

Back

Ratio Test

Front

Lim[n→∞] A{n+1}/A{n}

Back

Taylor Series for f(x) centered at x = c

Front

Back

Logistic Growth

Front

dy/dt = ky(L - y); y = L/(1 + ce^(-Lkt))

Back

Limit Comparison Test

Front

Lim[n→∞] A{n}/B{n}

Back

e^x

Front

1 + x + (x^2)/2! + (x^3)/3! + ...

Back